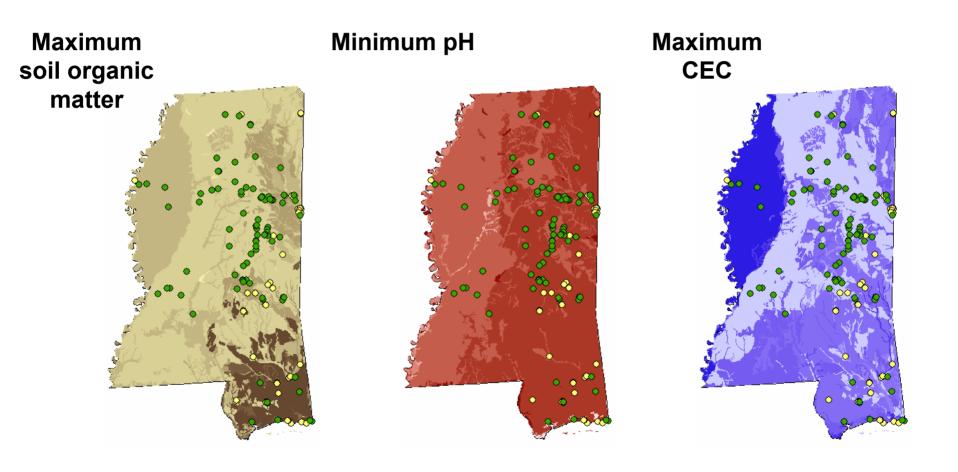
Habitat Modeling for Opuntia species in the southeastern United States

Gary N. Ervin and
Lucas C. Majure
Department of Biological Sciences
Mississippi State University



Rationale

Accurate predictive models for Opuntia habitat will facilitate efforts at locating and monitoring the progress of *Cactoblastis* invasion.

Objective

Use geospatial data layers to predict cactus presence via logistic regression and GIS

QUESTIONS

1. How to select the best model?

Model Fit versus

Model Adequacy

2. What spatial extent is most appropriate?

Local versus

State or Regional models

MODEL SELECTION

Model Fit

Does the model fit the available data?

- usually based on the data used to derive the model, e.g., likelihood tests, AIC, BIC

Model Accuracy

Does the model adequately depict reality?

- based on accuracy assessment criteria, ideally with an independent data set

Information-theoretic analyses, e.g., Akaike Information Criterion (AIC)

$$AIC_{c} = -2 \times \left(-\frac{n}{2} \log \left(\frac{RSS}{n - (p+1)}\right)\right) + 2K + \left(\frac{2K(K+1)}{n - K - 1}\right)$$

$$\Delta AIC_c =$$
 $AIC_{ci} - AIC_{cBest}$

Support for Model i:

 $\triangle AIC = 0 - 2$: Substantial

 $\triangle AIC = 4 - 7$: Considerably less

 Δ AIC > 10 : Essentially none

$$\mathbf{w_i} = \frac{\exp\left(-\frac{\Delta_i}{2}\right)}{\sum_{r=1}^{R} \exp\left(-\frac{\Delta_r}{2}\right)}$$

Information-theoretic analyses, e.g., Akaike Information Criterion (AIC)

$$AIC_{c} = -2 \times \left(-\frac{n}{2} \log \left(\frac{RSS}{n - (p+1)}\right)\right) + 2K + \left(\frac{2K(K+1)}{n - K - 1}\right)$$

$$\Delta AIC_c =$$
 $AIC_{ci} - AIC_{cBest}$

Support for Model i:

 $\triangle AIC = 0 - 2$: Substantial

 \triangle AIC = 4 – 7 : Considerably less

△AIC > 10 : Essentially none

$$\mathbf{w_i} = \frac{\exp\left(-\frac{\Delta_i}{2}\right)}{\sum_{r=1}^{R} \exp\left(-\frac{\Delta_r}{2}\right)}$$

Information-theoretic analyses, e.g., Akaike Information Criterion (AIC)

$$AIC_{c} = -2 \times \left(-\frac{n}{2}\log\left(\frac{RSS}{n - (p+1)}\right)\right) + 2K + \left(\frac{2K(K+1)}{n - K - 1}\right)$$

$$\Delta AIC_c =$$
 $AIC_{ci} - AIC_{cBest}$

Support for Model i:

 $\triangle AIC = 0 - 2$: Substantial

 $\triangle AIC = 4 - 7$: Considerably less

 Δ AIC > 10 : Essentially none

$$\mathbf{w_i} = \frac{\exp\left(-\frac{\Delta_i}{2}\right)}{\sum_{r=1}^{R} \exp\left(-\frac{\Delta_r}{2}\right)}$$

Information-theoretic analyses, e.g., Akaike Information Criterion (AIC)

$$AIC_{c} = -2 \times \left(-\frac{n}{2}\log\left(\frac{RSS}{n - (p+1)}\right)\right) + 2K + \left(\frac{2K(K+1)}{n - K - 1}\right)$$

$$\Delta AIC_c =$$
 $AIC_{ci} - AIC_{cBest}$

Support for Model i:

 $\triangle AIC = 0 - 2$: Substantial

 \triangle AIC = 4 – 7 : Considerably less

△AIC > 10 : Essentially none

$$\mathbf{w_i} = \frac{\exp\left(-\frac{\Delta_i}{2}\right)}{\sum_{r=1}^{R} \exp\left(-\frac{\Delta_r}{2}\right)}$$

MODEL ACCURACY:

Overall success

influenced by prevalence and assigns high accuracy to rare species

Sensitivity and Specificity

independent of prevalence but not adjusted for chance

Cohen's kappa

accounts for chance and omission/commission errors but influenced by prevalence

True Skill Statistic

similar to kappa but thought to be independent of prevalence

The last two range from -1 to +1; +1 = perfect agreement.

A SPECIFIC EXAMPLE

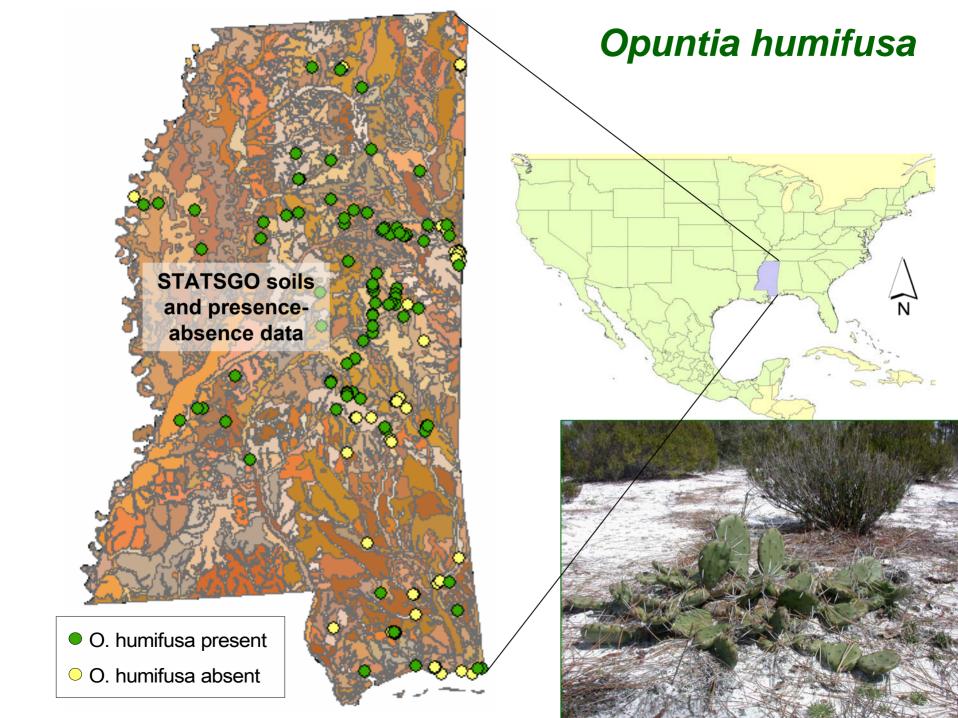
<u>Data</u>

Opuntia presence-absence (189 points):

O. humifusa – 99 presence & 90 absence (somewhat balanced)

Soil (STATSGO geospatial data layers):

available water content, bulk density, CEC, clay content, organic matter content, permeability, pH (minimum & maximum per MU)


<u>Analyses</u>

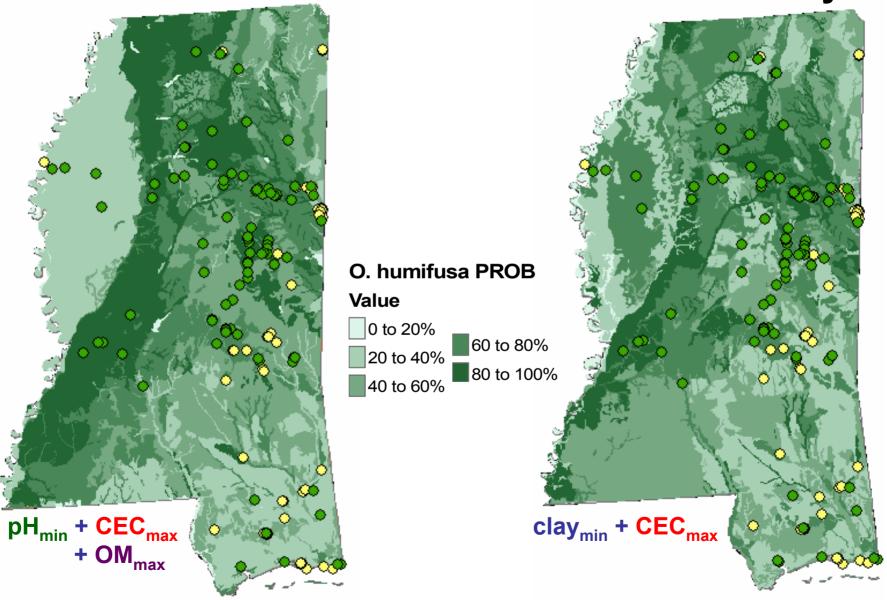
Correlation analyses among soil parameters

→ resulted in 46 logistic regression models

AIC analyses to compare resulting models

Calculated all five model accuracy criteria (will focus here on kappa & TSS)

Relative importance of soil parameters AIC approach


Soil parameters in model	ΔΑΙС	Akaike weight (w)
pH _{min} + CEC _{max} + OM _{max}	0.0	0.20
Perm _{max}	0.1	0.19
pH _{min} + CEC _{max} + OM _{max} + Perm _{min}	0.6	0.15
$pH_{min} + CEC_{max} + AWC_{max}$	1.2	0.11
$pH_{min} + CEC_{max} + Perm_{min}$	1.4	0.10
pH _{min} + CEC _{max}	1.6	0.09

Relative importance of soil parameters Accuracy criteria

	in model	kappa	TSS	
	clay _{min} + CEC _{max}	0.41	0.42	
	clay _{min} + CEC _{max} + OM _{min}	0.40	0.40	
2	Perm _{max}	0.38	0.38	
	Perm _{max +} OM _{min}	0.38	0.38	
	pH _{max} + CEC _{max}	0.37	0.37	
1	pH _{min} + CEC _{max} + OM _{max}	0.37	0.37	
4	pH _{min} + CEC _{max} + AWC _{max}	0.37	0.37	

Model fit

Model Accuracy

SPATIAL EXTENT

Available data

Data may be restricted in distribution or

Presences and absences may be inadequately dispersed

Objectives

Targeting specific areas for surveys versus

Estimating potential distributions

A SECOND EXAMPLE

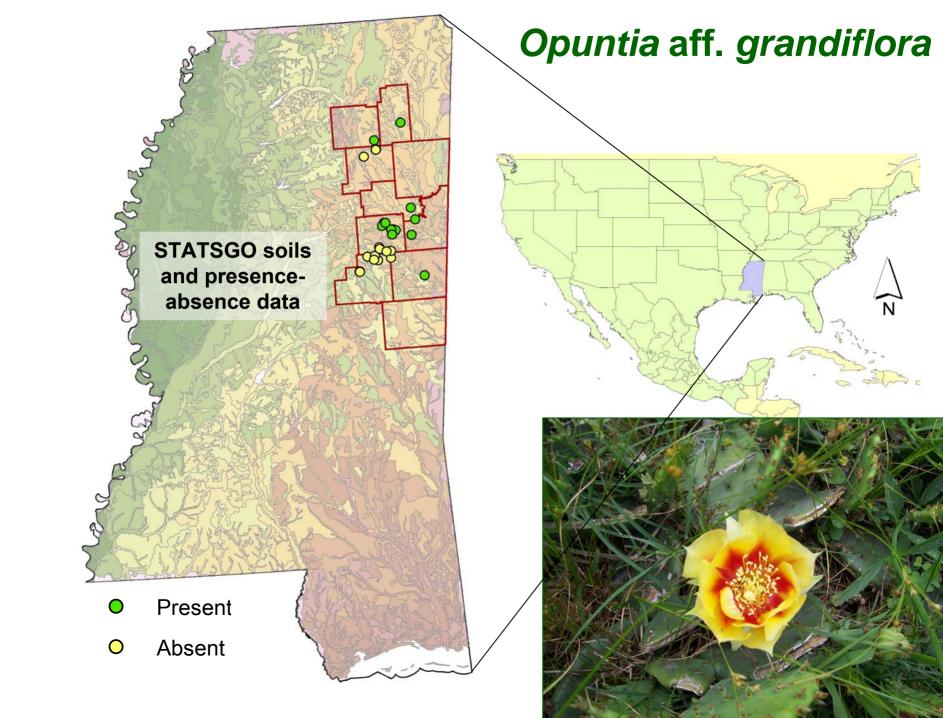
<u>Data</u>

Opuntia presence-absence (33 points):

O. affinis grandiflora – 14 presence & 19 absence (again somewhat balanced)

Soil (STATSGO geospatial data layers):

available water content, bulk density, CEC, clay content, organic matter content, permeability, pH (minimum & maximum per MU)


Analyses

Correlation analyses among soil parameters and with *Opuntia* presence

→ resulted in 19 logistic regression models

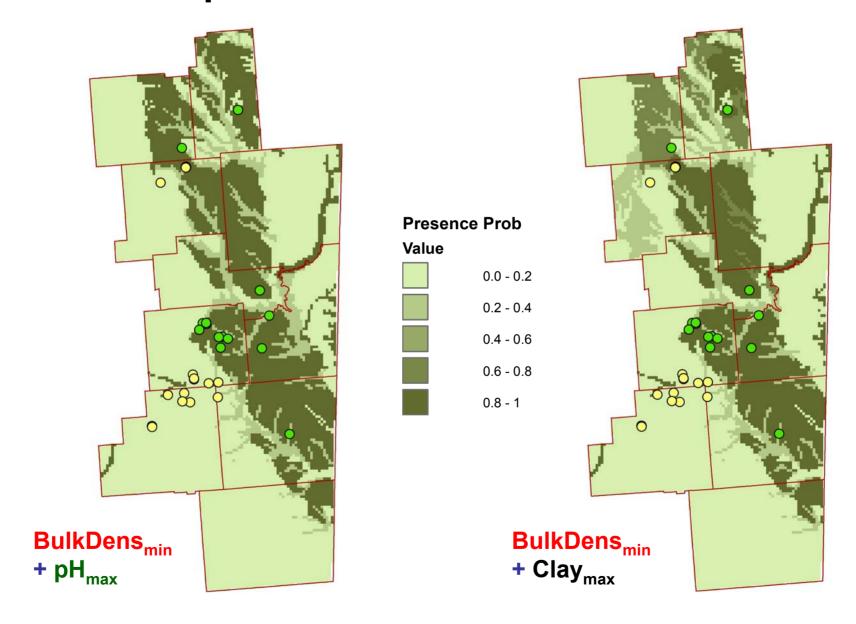
AIC analyses to compare resulting models

Calculated five model accuracy criteria

Relative importance of soil parameters AIC approach

Soil parameters		Akaike
in model	ΔAICc	weight (w)
BulkDens _{min} + pH _{max}	0.0	0.49
BulkDens _{min} + Clay _{max}	1.2	0.27
$BulkDens_{min} + pH_{max} + pH_{min}$	2.8	0.12
BulkDens _{min} + Clay _{max} + pH _{min}	3.9	0.07

Relative importance of soil parameters Accuracy criteria


Soil parameters in model	kappa	TSS	
PulkDone + nH	0.88	0.88	
BulkDens + pH _{max}			
BulkDens _{min} + Clay _{max}	0.88	0.88	
BulkDens _{min} + pH _{max} + pH _{min}	0.88	0.88	
BulkDens _{min} + Clay _{max} + pH _{min}	0.88	0.88	

Success = 94%

Sensitivity = 93% and Specificity = 95%

(versus 70%, 63%, and 78% for best O. humifusa models)

Top two models based on AIC

SUMMARY

Model selection

Some degree of agreement between model fit and model accuracy criteria

Spatial extent

Models using the smaller spatial extent exhibited greater agreement between fit and accuracy criteria

Models using the smaller extent resulted in higher values for assessment criteria

